skip to main content


Search for: All records

Creators/Authors contains: "Isborn, Christine M."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    Including both environmental and vibronic effects is important for accurate simulation of optical spectra, but combining these effects remains computationally challenging. We outline two approaches that consider both the explicit atomistic environment and the vibronic transitions. Both phenomena are responsible for spectral shapes in linear spectroscopy and the electronic evolution measured in nonlinear spectroscopy. The first approach utilizes snapshots of chromophore-environment configurations for which chromophore normal modes are determined. We outline various approximations for this static approach that assumes harmonic potentials and ignores dynamic system-environment coupling. The second approach obtains excitation energies for a series of time-correlated snapshots. This dynamic approach relies on the accurate truncation of the cumulant expansion but treats the dynamics of the chromophore and the environment on equal footing. Both approaches show significant potential for making strides toward more accurate optical spectroscopy simulations of complex condensed phase systems. 
    more » « less
  2. We consider the problem of learning density‐dependent molecular Hamiltonian matrices from time series of electron density matrices, all in the context of Hartree–Fock theory. Prior work developed a solution to this problem for small molecular systems with density and Hamiltonian matrices of size at most 6 × 6. Here, using a battery of techniques, we scale prior methods to larger molecular systems with, for example, 29 × 29 matrices. This includes systems that either have more electrons or are expressed in large basis sets such as 6‐311++G**. Scaling the method to larger systems enhances its relevance for realistic applications in chemistry and physics. To achieve this scaling, we apply dimensionality reduction, ridge regression and analytic computation of Hessians. Through the combination of these techniques, we are able to learn Hamiltonians by minimizing an objective function that encodes local propagation error. Importantly, these learned Hamiltonians can then be used to predict electron dynamics for thousands of steps: When we use our learned Hamiltonians to numerically solve the time‐dependent Hartree–Fock equation, we obtain predicted dynamics that are in close quantitative agreement with ground truth dynamics. This includes field‐off trajectories similar to the training data and field‐on trajectories outside of the training data.

     
    more » « less